direct product, p-group, abelian, monomial
Aliases: C22×C16, SmallGroup(64,183)
Series: Derived ►Chief ►Lower central ►Upper central ►Jennings
C1 — C22×C16 |
C1 — C22×C16 |
C1 — C22×C16 |
Generators and relations for C22×C16
G = < a,b,c | a2=b2=c16=1, ab=ba, ac=ca, bc=cb >
(1 48)(2 33)(3 34)(4 35)(5 36)(6 37)(7 38)(8 39)(9 40)(10 41)(11 42)(12 43)(13 44)(14 45)(15 46)(16 47)(17 51)(18 52)(19 53)(20 54)(21 55)(22 56)(23 57)(24 58)(25 59)(26 60)(27 61)(28 62)(29 63)(30 64)(31 49)(32 50)
(1 23)(2 24)(3 25)(4 26)(5 27)(6 28)(7 29)(8 30)(9 31)(10 32)(11 17)(12 18)(13 19)(14 20)(15 21)(16 22)(33 58)(34 59)(35 60)(36 61)(37 62)(38 63)(39 64)(40 49)(41 50)(42 51)(43 52)(44 53)(45 54)(46 55)(47 56)(48 57)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32)(33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64)
G:=sub<Sym(64)| (1,48)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,49)(32,50), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)>;
G:=Group( (1,48)(2,33)(3,34)(4,35)(5,36)(6,37)(7,38)(8,39)(9,40)(10,41)(11,42)(12,43)(13,44)(14,45)(15,46)(16,47)(17,51)(18,52)(19,53)(20,54)(21,55)(22,56)(23,57)(24,58)(25,59)(26,60)(27,61)(28,62)(29,63)(30,64)(31,49)(32,50), (1,23)(2,24)(3,25)(4,26)(5,27)(6,28)(7,29)(8,30)(9,31)(10,32)(11,17)(12,18)(13,19)(14,20)(15,21)(16,22)(33,58)(34,59)(35,60)(36,61)(37,62)(38,63)(39,64)(40,49)(41,50)(42,51)(43,52)(44,53)(45,54)(46,55)(47,56)(48,57), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32)(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64) );
G=PermutationGroup([[(1,48),(2,33),(3,34),(4,35),(5,36),(6,37),(7,38),(8,39),(9,40),(10,41),(11,42),(12,43),(13,44),(14,45),(15,46),(16,47),(17,51),(18,52),(19,53),(20,54),(21,55),(22,56),(23,57),(24,58),(25,59),(26,60),(27,61),(28,62),(29,63),(30,64),(31,49),(32,50)], [(1,23),(2,24),(3,25),(4,26),(5,27),(6,28),(7,29),(8,30),(9,31),(10,32),(11,17),(12,18),(13,19),(14,20),(15,21),(16,22),(33,58),(34,59),(35,60),(36,61),(37,62),(38,63),(39,64),(40,49),(41,50),(42,51),(43,52),(44,53),(45,54),(46,55),(47,56),(48,57)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32),(33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64)]])
C22×C16 is a maximal subgroup of
C22.7M5(2) M5(2)⋊7C4 C8.7C42 C8.8C42 C8.9C42 C22⋊C32 C16○2M5(2) (C2×D4).5C8 C23.24D8 C4⋊C4.7C8 C23.25D8 C16⋊9D4 C16⋊7D4 C16.19D4 C16⋊8D4
C22×C16 is a maximal quotient of
C42.13C8 D4○C32
64 conjugacy classes
class | 1 | 2A | ··· | 2G | 4A | ··· | 4H | 8A | ··· | 8P | 16A | ··· | 16AF |
order | 1 | 2 | ··· | 2 | 4 | ··· | 4 | 8 | ··· | 8 | 16 | ··· | 16 |
size | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 | 1 | ··· | 1 |
64 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
type | + | + | + | |||||
image | C1 | C2 | C2 | C4 | C4 | C8 | C8 | C16 |
kernel | C22×C16 | C2×C16 | C22×C8 | C2×C8 | C22×C4 | C2×C4 | C23 | C22 |
# reps | 1 | 6 | 1 | 6 | 2 | 12 | 4 | 32 |
Matrix representation of C22×C16 ►in GL3(𝔽17) generated by
16 | 0 | 0 |
0 | 16 | 0 |
0 | 0 | 16 |
1 | 0 | 0 |
0 | 1 | 0 |
0 | 0 | 16 |
5 | 0 | 0 |
0 | 9 | 0 |
0 | 0 | 1 |
G:=sub<GL(3,GF(17))| [16,0,0,0,16,0,0,0,16],[1,0,0,0,1,0,0,0,16],[5,0,0,0,9,0,0,0,1] >;
C22×C16 in GAP, Magma, Sage, TeX
C_2^2\times C_{16}
% in TeX
G:=Group("C2^2xC16");
// GroupNames label
G:=SmallGroup(64,183);
// by ID
G=gap.SmallGroup(64,183);
# by ID
G:=PCGroup([6,-2,2,2,-2,-2,-2,48,69,88]);
// Polycyclic
G:=Group<a,b,c|a^2=b^2=c^16=1,a*b=b*a,a*c=c*a,b*c=c*b>;
// generators/relations
Export